Optimal Subspaces for n-Widths of p-Ellipsoids

Boris Mityagin and Joseph Torok
Department of Mathematics, Ohio State University. Columbus, Ohio 43210

Communicated by Richard S. Varga
Received December 1, 1980

The n-width of a compact set K in a finite or infinite dimensional Banach space B is defined after Kolmogorov [4, 7] as

$$
d_{n}(K, B)=\inf _{L, \operatorname{dim} L \leqslant n} \sup _{x \in K} \operatorname{dist}(x, L),
$$

where

$$
\operatorname{dist}(x, M)=\inf _{y \in M}\|x-y\|_{B}
$$

The computation of asymptotics of these characteristics for concrete classes of compacta and Banach spaces of smooth and holomorphic functions was one of the central problems of the theory of approximation for the last two decades. However, except for Hilbert spaces, it seems there is no information on the structure of the set \mathscr{L}_{n} of those n-dimensional subspaces in B which give the minimal value of the function

$$
\delta_{n}(K ; L)=\sup _{x \in K} \operatorname{dist}(x, L), \quad \operatorname{dim} L=n .
$$

Karlovitz [2, 3] and Ismagilov and Mityagin (see [1, Theorem 1.2]) give the complete description of the set in the case of an ellipsoid in a Hilbert space. Melkman and Micchelli [5] showed that spline subspaces are optimal in Sobolev spaces W_{2}^{r} (one variable).

In this note we extend the Ismagilov-Mityagin analysis $(p=2)$ to the case of p-ellipsoids

$$
\mathscr{E}=\left\{x \in l_{p}^{N}: \sum_{i=0}^{N}\left|\frac{x_{i}}{a_{i}}\right|^{P} \leqslant 1\right\}
$$

for any $p, 1 \leqslant p \leqslant \infty$. Assume that $\left\{a_{i}\right\}_{i=0}^{N}, N \leqslant \infty$, is a strictly decreasing sequence of positive scalars.

It is well known [6] that in the above case

$$
d_{n}\left(\mathcal{E}, l_{p}\right)=a_{n}, \quad n \geqslant 0
$$

so

$$
\mathscr{L}_{n}=\left\{L, \operatorname{dim} L=n \mid \delta_{n}(\mathscr{E} ; L)=a_{n}\right\}
$$

If we let $\left\{e_{i}\right\}_{i=0}^{N}$ be the coordinate vectors for l_{p}^{N} and $H_{n}=\operatorname{sp}\left\{e_{i}\right\}_{i=0}^{n-1}$, then it is easy to see that H_{n} is an optimal subspace of dimension n. However, small perturbations of the subspaces also yield optimal subspaces. Below we give a precise description of these perturbations.

For the remainder of this paper, fix $n<N \leqslant \infty$. To simplify notation, it is to be understood that $l_{p}=l_{p}^{N}$.

Set

$$
\begin{aligned}
\mathscr{E} & =\left\{x \in l_{p}: \sum_{i=0}^{N}\left|\frac{x_{i}}{a_{i}}\right|^{P} \leqslant 1\right\}, & & 1 \leqslant p<\infty \\
& =\left\{x \in l_{\infty}: \sup _{i}\left|\frac{x_{i}}{a_{i}}\right| \leqslant 1\right\}, & & p=\infty
\end{aligned}
$$

Let $\left\{e_{i}\right\}_{i=0}^{N}$ and $\left\{e_{i}^{\prime}\right\}_{i=0}^{N}$ be the coordinate vectors for l_{p} and l_{q}, respectively, where $1 / p+1 / q=1$. For each n, with $1 \leqslant n<N$,

$$
\begin{array}{ll}
H_{n}=\operatorname{sp}\left\{e_{i}\right\}_{i \leqslant n-1} & H^{n}=\left\{x \in l_{p}: x_{i}=0,0 \leqslant i \leqslant n\right\} \\
H_{n}^{\prime}=\operatorname{sp}\left\{e_{i}^{\prime}\right\}_{i \leqslant n-1} & H_{n}^{+}=\left\{y \in l_{q}: y_{i}=0,0 \leqslant i \leqslant n\right\} .
\end{array}
$$

On H_{n}^{\prime}, define

$$
\begin{aligned}
\left\|\|w\|_{1}\right. & =\left[\sum_{i=0}^{n-1}\left(a_{i}^{q}-q_{n}^{q}\right)\left|w_{i}\right|^{q}\right]^{1 / q} & & 1 \leqslant q<\infty \\
& =\sup _{0 \leqslant i \leqslant n-1} a_{i}\left|w_{i}\right| & & q=\infty .
\end{aligned}
$$

On H_{n}^{+}, define

$$
\begin{aligned}
\left\|\|y\|_{2}\right. & =\left[\sum_{i=n+1}^{N}\left(a_{n}^{q}-a_{i}^{q}\right)\left|y_{i}\right|^{q}\right]^{1 / q} & & 1 \leqslant q<\infty \\
& =a_{n} \sup _{i>n+1}\left|y_{i}\right| & & q=\infty .
\end{aligned}
$$

Since $\left\{a_{i}\right\}_{i=0}^{N}$ is strictly decreasing, it is easy to see that $\|\mid \cdot\| \|_{1}$ and $\left\|\|\cdot\|_{2}\right.$ are norms on the spaces H_{n}^{\prime} and H_{n}^{+}, respectively. For $1 \leqslant p \leqslant \infty$, we have

Theorem. Let L be a subspace of $l_{p}, \operatorname{dim}=n . L$ is an optimal subspace if and only if $L=\operatorname{graph}(S)$, where $S: H_{n} \rightarrow H^{n}$ is a linear operator with $\left\|S^{\prime} y\right\|_{1} \leqslant\|y\|_{2} \forall y \in H_{n}^{+}$.

Proof. We give all the details in the case $1<p<\infty$ and then some comments to adjust this proof to the cases $p=1$ or ∞. Suppose L is an optimal subspace of dimension n. Then

$$
\begin{equation*}
\max _{x \in Z} \operatorname{dist}(x, L)=a_{n} \tag{1}
\end{equation*}
$$

Let $Q: l_{p} \rightarrow l_{p} / L$ be the canonical surjection. $\forall x \in l_{p}$,

$$
\|Q x\|_{Q_{p} / L}=\inf _{y \in L}\|x-y\|_{p}=\operatorname{dist}(x, L) .
$$

By (1).

$$
\|Q x\|_{L_{p} / L} \leqslant a_{n}, \quad \forall x \in \mathscr{E}
$$

Define $A: l_{p} \rightarrow l_{p}$ by $A e_{i}=a_{i} e_{i}, 0 \leqslant i \leqslant N$. Thus $\mathscr{E}=A(B)$, where B is the unit ball in l_{p}. Consider $Q A: l_{p} \rightarrow l_{p / L}$

$$
\|Q A\|=\sup _{x \in B}\|Q A x\|_{I_{p} / L}=\sup _{x \in \mathscr{Z}}\|Q x\|_{I_{p} / L} \leqslant a_{n} .
$$

Hence

$$
\begin{equation*}
\left\|A^{\prime} Q^{\prime}\right\|=\|Q A\| \leqslant a_{n} \tag{2}
\end{equation*}
$$

Furthermore, $\left.A^{\prime}\right|_{L^{\perp}}=A^{\prime} Q^{\prime}$ implies $\|\left. A^{\prime}\right|_{L^{\perp}} \leqslant a_{n}$.
Next, we assert that $L^{\perp} \cap H_{n}^{\prime}=\{0\}$. If not, then exists some $z \in L_{n}^{\perp} \cap H_{n}^{\prime}$ with $\|z\|_{q}=1$. By (2), $\left\|A^{\prime} z\right\|_{q} \leqslant a_{n}$. But $z \in H_{n}^{\prime}$, so $\left\|A^{\prime} z\right\|_{q} \geqslant a_{n-1}$ since $A^{\prime} z=\sum_{i=0}^{n-1} a_{i} z_{i} e_{i}^{\prime}$. Thus $a_{n} \geqslant a_{n-1}>a_{n}$, a contradiction.

Now let $P_{n}: L^{\perp} \rightarrow H_{n-1}^{+}$be the coordinate-wise projection. $L^{\perp} \cap H_{n}^{\prime}=\{0\}$ implies that P_{n} and $R_{n}: H_{n}^{\prime} \rightarrow l_{q} / L^{\perp}$ are $1-1$. Since H_{n}^{\prime} and l_{q} / L^{\perp} are finite dimensional, R_{n} is an isomorphism. Hence $l_{q}=L^{\perp} \oplus l_{q} / L^{\perp}$. Using this fact, it is easy to show that P_{n} is also onto.

For each $y \in H_{n-1}^{+}$, let $T y=P_{n}^{-1} y-y$. Since P_{n} is a bijection and $P_{n}^{-1} y=$ $y+T y, L^{\perp}=\left\{y+T y: y \in H_{n-1}^{+}\right\}$. Now $\left\|A^{\prime}\right\|_{L \perp} \| \leqslant a_{n}$ implies that

$$
\left\|A^{\prime} y+A^{\prime} T y\right\|_{q} \leqslant a_{n}\|y+T y\|_{q} \quad \forall y \in H_{n-1}^{+}
$$

by the decomposition of L^{\perp}. So for each $y \in H_{n-1}^{+}$

$$
\begin{equation*}
\left\|A^{\prime} y+A^{\prime} T y\right\|_{q}^{q} \leqslant a_{n}^{q}\|y+T y\|_{q}^{q} \tag{3}
\end{equation*}
$$

But y and $T y$ are disjointly supported and the subspaces H_{n}^{\prime} and H_{n-1}^{+}are invariant under A, hence

$$
\begin{equation*}
\left\|A^{\prime} y\right\|_{q}^{q}+\left\|A^{\prime} T y\right\|_{q}^{q}=\left\|A^{\prime} y+A^{\prime} T y\right\|_{q}^{q} \leqslant a_{n}^{q}\|y\|_{q}^{q}+a_{n}^{q}\|T y\|_{q}^{q} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|A^{\prime} T y\right\|_{q}^{q}-a_{q}^{q}\|T y\|_{q}^{q} \leqslant a_{n}^{q} y\left\|_{q}^{q}-\right\| A^{\prime} y \|_{q}^{q} \quad \forall y \in H_{n-1}^{+} \tag{5}
\end{equation*}
$$

Substituting e_{n}^{\prime} into (5), we have

$$
\left\|A^{\prime} T e_{n}^{\prime}\right\|_{q}^{q}-a_{n}^{q}\left\|T e_{n}^{\prime}\right\|_{q}^{q} \leqslant a_{n}^{q}\left\|e_{n}^{\prime}\right\|_{q}^{q}-\left\|a_{n} e_{n}^{\prime}\right\|_{q}^{q}=0
$$

So

$$
\left\|A^{\prime} T e_{n}^{\prime}\right\|_{q} \leqslant a_{n}\left\|T e_{n}^{\prime}\right\|_{q} \quad \text { and } \quad a_{n-1}\left\|T e_{n}^{\prime}\right\|_{q} \leqslant a_{n}\left\|T e_{n}^{\prime}\right\|_{q}
$$

since $T e_{n}^{\prime} \in H_{n}^{\prime}$. Thus $T e_{n}^{\prime}=0$. Let $T=\left.T\right|_{H_{n}^{+}}$. By (5),

$$
\left\|A^{\prime} T y\right\|_{q}^{q}-a_{n}^{q}\|T y\|_{q}^{q} \leqslant a_{n}^{q}\|y\|_{q}^{q}-\left\|A^{\prime} y\right\|_{q}^{q} \quad \forall y \in H_{n}^{+} .
$$

That is,

$$
\begin{align*}
& \sum_{i=0}^{n-1}\left|\left(A^{\prime} T y\right)_{i}\right|^{q}-a_{n}^{q} \sum_{i=0}^{n-1}\left|(T y)_{i}\right|^{q} \\
& \quad \leqslant a_{n}^{q} \sum_{i=n+1}^{N}\left|y_{i}\right|^{q}-\sum_{i=n+1}^{N}\left|\left(A^{\prime} y\right)_{i}\right|^{q} \\
& \Leftrightarrow \sum_{i=0}^{n-1} a_{i}^{q}\left|(T y)_{i}\right|^{q}-a_{n}^{q} \sum_{i=0}^{n-1}\left|(T y)_{i}\right|^{q} \\
& \leqslant a_{n}^{q} \sum_{i=n+1}^{N}\left|y_{i}\right|^{q}-\sum_{i=n+1}^{N} a_{i}^{q}\left|y_{i}\right|^{q} \\
& \Leftrightarrow \sum_{i=0}^{n-1}\left(a_{i}^{q}-a_{n}^{q}\right)\left|(T y)_{i}\right|^{q} \leqslant \sum_{i=n+1}^{N}\left(a_{n}^{q}-a_{i}^{q}\right)\left|y_{i}\right|^{q} \\
& \Leftrightarrow\|T y\|_{1} \leqslant\|y\|_{2} \quad \forall y \in H_{n}^{+} . \tag{6}
\end{align*}
$$

From the decomposition $L^{\perp}=\left\{y+T y: y \in H_{n-1}^{+}\right\}$, it follows that $K_{n}=\left\{x-T^{\prime} x: x \in H_{n}\right\} \subseteq L$, where $T^{\prime}: H_{n} \rightarrow H_{n}^{+}$. Given any $x \in H_{n}, x$ and $T x$ are disjointly supported. Hence $\operatorname{dim} K_{n}=n=\operatorname{dim} L$ and $L=K_{n}=\left\{x-T^{\prime} x: \quad x \in H_{n}\right\}$. Setting $\quad S=-T^{\prime}$, we have $L=\left\{x+S x: x \in H_{n}\right\}=\operatorname{graph}(S)$ with $\left\|S^{\prime} y\right\|_{1} \leqslant\|y\|_{2} \forall y \in H_{n}^{+}$.

Since the above steps are reversible, the theorem is proved.

In the case $p=1$, we obtain the estimates of the norms as in (3)-(6) by observing that $\forall y \in H_{n-1}^{+}$,

$$
\begin{aligned}
\| A^{\prime} y & +A^{\prime} T y\left\|_{\infty} \leqslant a_{n}\right\| y+T y \|_{\infty} \\
& \Leftrightarrow \sup _{i}\left|\left(A^{\prime} y+A^{\prime} T y\right)_{i}\right| \leqslant a_{n} \sup _{i}\left|(y+T y)_{i}\right| \\
& \Leftrightarrow \max \left[\sup _{i \geqslant n} a_{i}\left|y_{i}\right|, \sup _{i \leqslant n-1} a_{n}\left|(T y)_{i}\right|\right] \\
& \leqslant a_{n} \max \left[\sup _{i \geqslant n}\left|y_{i}\right|, \sup _{i \leqslant n-1}\left|(T y)_{i}\right|\right] \\
& \Leftrightarrow \sup _{i \leqslant n-1} a_{i}\left|(T y)_{i}\right| \leqslant a_{n} \sup _{i \geqslant n}\left|y_{i}\right|
\end{aligned}
$$

by the nature of the sequence $\left\{a_{i}\right\}_{i=0}^{N}$.
In the case $p=\infty$, let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for L. Replace L^{\perp} by $L^{+}=$ $\bigcap_{i=1}^{n} \operatorname{Ker} v_{i}$. As in the previous cases, $\left\|\left.A^{\prime}\right|_{L^{+}}\right\| \leqslant a_{n}$ and $L^{+} \cap H_{n}^{\prime}=\{0\}$. The remainder of the proof is the same as in the case $1<p<\infty$.

Remark. In the above analysis, the strict monotonicity of the sequence $\left\{a_{i}\right\}_{i=0}^{N}$ was not necessary. Let $m=\min \left\{k \leqslant n: a_{k}=a_{k+1}=\cdots=a_{n}\right\}$ and $M=\sup \left\{k>n: a_{n}=\cdots=a_{k-2}=\cdots a_{k-1}\right\}$. Then we have

Proposition. L is an optimal subspace if and only if $L=\operatorname{graph}(S) \oplus E$, where E is a subspace of $H_{M} \cap H^{m-1}$ and $S: H_{m} \rightarrow H^{M-1}$ is a linear operator with $\left\|S^{\prime} y\right\|_{1} \leqslant\|y\|_{2} \forall y \in H_{M-1}^{+}$.

The analysis for this case is the same as in the proof of the theorem. If L is an optimal subspace and $Q: L \rightarrow H_{m} \oplus H^{M-1}$ is the coordinate-wise projection, set $E=\operatorname{Ker} Q$. It follows that $(Q L)^{+}$, the coordinate projection of $(Q L)^{\perp}$ into $H_{m}^{\prime} \oplus H_{M-1}^{+}$, is isomorphic to H_{M-1}^{+}. (This is an analogue of the statement that $L^{\perp} \cap H_{n}^{\prime}=\{0\}$ and P_{n} is onto in the case of strict monotonicity-see the two paragraphs before (3).) Thus there is a linear operator $T: H_{M-1}^{+} \rightarrow H_{m}^{\prime}$ such that $(Q L)^{+}=\operatorname{graph}(T)$. The remainder of the analysis parallels the arguments in the proof.

References

1. R. S. Ismagilov, The widths of compacta in linear normed spaces, in "Geometry of Linear Spaces and Operator Theory" (B. S. Mityagin, Ed.), pp. 75-113, Yaroslavl, 1977. [Russian]
2. L. A. Karlovitz, On a class of Kolmogorov n-width problems, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 53 (1972), 241-245.
3. L. A. Karlovitz, Remarks on variational characterization of eigenvalues and n-width problems, J. Math. Anal. Appl. 53 (1976), 99-110.
4. A. Kolmogorov, Uber die beste Annaherung von Funktionen einer gegebenen Funktionenklasse, Ann. of Math. 37 (1936), 107-110.
5. A. A. Melkman and C. A. Micchelli, Spline spaces are optımal for $L n$-width, Illinois J. Math. 22 (1978), 541-564.
6. B. S. Mrtyagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), 63-132, MR 27 \#2837. [Russian]
7. V. M. Tikhomirov, Diameters of sets in function spaces and the theory of best approximations, Uspekhi Mat. Nauk 15 (1960), 81-120. MR 22 \#8268. |Russian|
